PhRMA PISC Expert Team White Paper: Toward a consistent standard of evidence when evaluating the efficacy of an experimental treatment from a randomized, active-controlled Trial

Patrick Peterson, Ph.D. Eli Lilly and Company

BASS XV (Nov. 3, 2008)

PISC Team (Non-Inferiority / Active-Controlled Trials)

- Steven Snapinn (Amgen) << Chair >>
- Kevin Carroll (Astra Zeneca)
- Christy Chuang-Stein (Pfizer)
- Yu-Yun Ho (Novartis)
- Qi Jiang (Amgen)
- Gang Li (J&J)
- Patrick Peterson (Lilly)
- Yong-Cheng Wang (J&J)
- Matilde Sanchez (Arenapharm)
- Rick Sax (Astra Zeneca)

Outline

- Demonstrating efficacy in an active controlled (AC) trial (We did not consider safety-related issues of AC trials)
- Background & review of non-inferiority (NI) methods
 - Issues with fixed-margin approaches and inconsistent standards of evidence
- The case for "one standard of evidence" and the use of the synthesis method to apply this standard
- Logical inconsistencies if treating NI differently
- Key assumptions of the synthesis method
 - Adjusting for possible violations
- Conclusions / Q&A / Discussion

Focus of our Team's Efforts:

- Demonstrating an experimental treatment (T) is sufficiently effective for regulatory approval
- We assume the following for purposes of our inquiry:
 - Pivotal trial compares T to an active control treatment (C)
 - Inclusion of a placebo arm is either unethical or impractical
 - We will be able to demonstrate that T is a sufficiently safe treatment for the intended indication

Active Controlled (AC) Trial without Placebo Arm

- Possible outcomes of our AC trial:
 - 1) T statistically superior to C
 - 2) C statistically superior to T
 - 3) No statistical difference observed between T and C

Although (1) is the most desirable outcome, a prudent researcher should plan for (2) and/or (3).

Relevant Parameters for the AC Trial

- For our AC trial, we can still define:
 - γ_{TC} = parameter for efficacy of T over C (estimated in AC trial)
 - γ_{CP} = parameter for efficacy of C over P (from historical trial)
 - γ_{TP} = parameter for efficacy of T over P (not directly estimated)

<< Assume increasing values of these represent greater efficacy >>

So a test to show that $\gamma_{TP} > 0$ (*i.e.* that T has greater efficacy than P) corresponds to the traditional "gold standard" for demonstrating the efficacy of a new treatment.

Illustration of Two Tests for Efficacy Using the 95% Confidence Interval Estimate for γ_{TC}

Two Types of Methods for Analyzing an AC Trial (1)

- Both require an historical estimate of γ_{CP} (For our discussion we will consider γ_{CP} as denoting the efficacy of C relative to either placebo or some prior standard of care)
 - Fixed margin approach:
 - Use historical estimate of γ_{CP} (and possibly its standard error as well) to determine a fixed numerical margin *m* against which to test

 $H_0: \gamma_{TC} = m \quad \underline{versus} \quad H_A: \gamma_{TC} > m$

• <u>One example</u>: The "95-95", or "two-confidence-interval" method sets *m* equal to (-1/2) the lower 95% confidence bound for γ_{CP}

The margin *m*, when considered on the scale of γ_{TC} , is a number less than 0:

Two Types of Methods for Analyzing an AC Trial (2)

- In general, fixed margin methods do not treat the historical estimate for γ_{CP} as a random variable.
 - Because of this, Rothmann and colleagues^{*} showed that the "95-95" method typically leads to much lower-than-nominal α levels.
- Synthesis approach:
 - Assume γ_{CP} is constant (the so-called "constancy assumption") and then treat the historical estimate of γ_{CP} as a random variable.
 - Assume stochastic independence between historical data and the AC trial; then the following estimates can be a basis for analysis:

•
$$\dot{\gamma}_{TP} = \dot{\gamma}_{TC} + \dot{\gamma}_{CP}$$

•
$$\operatorname{Var}^{\wedge} [\gamma_{\mathrm{TP}}] = \operatorname{Var}^{\wedge} [\gamma_{\mathrm{TC}}] + \operatorname{Var}^{\wedge} [\gamma_{\mathrm{CP}}]$$

* Stats in Med 22:239-264, 2003

FDA's "Preservation of Effect" Approach

- FDA has typically rejected the "gold standard" (showing $\gamma_{TP} > 0$) when evaluating AC trials --- instead requiring that T preserve some fixed fraction of the efficacy benefit that C has over P:
 - *e.g.* Show that $\gamma_{TP} > (0.5) \gamma_{CP} \ll 50\%$ preservation >>

FDA has been inconsistent over how to test for preservation:

- Synthesis approach used in some cases (*e.g.* Rothmann method^{*})
- 95-95 or other fixed margin methods applied in other instances

If $\operatorname{Var}[\gamma_{TC}]$ can be adequately approximated as a function of the AC trial size, then the synthesis test of preservation will correspond to a fixed margin test (where the margin *m* is a function of the preservation percentage to be tested).

^{*} Stats in Med 22:239-264, 2003

%-Preservation Illustrated by the 95% Confidence Interval Estimate for γ_{TC}

The Case for "One Standard of Evidence"

- The traditional <u>standard of evidence</u> for efficacy of a new treatment T is: \rightarrow Statistically significant evidence that $\gamma_{TP} > 0$
- Why should an arbitrarily higher standard of evidence ($\gamma_{TP} > y > 0$) be applied when an AC trial has been performed?
- The preservation margin is necessarily arbitrary, in the sense that there will be values below the margin for which there is no meaningful clinical difference in efficacy from a value above the margin.
 - Preserving less than p% does **not** imply that T is an ineffective treatment.
 - In contrast, " $\gamma_{TP} = 0$ " has a definite objective clinical meaning.
- Requiring a higher standard of evidence for AC trials institutes a regulatory bias in favor of the first drug to be approved.

The Case for One Standard, continued:

- The regulatory bias inherent in applying the preservation criterion leads to logical inconsistencies, as illustrated by the following example:
 - Suppose C and T were both evaluated in placebo-controlled trials, but C was approved first
 - Assume $\gamma_{TP} > \gamma_{CP}$
 - FDA's requirement that T preserve *p*% of C's benefit over placebo will in many plausible instances lead to rejection of T (even though T may be a better drug than C !)

Hypothetical Example: 95% CIs for efficacy relative to P

We All Lose with the Preservation Standard

- Our hypothetical example highlights unfairness and intellectual inconsistency in current regulatory practice.
 - Not only do pharmaceutical companies lose out in this framework: Physicians and patients may never get access to effective treatments excluded by these practices.
 - Two treatments with similar statistical efficacy may have considerably different efficacy for individual patients:

Example: Metastatic Bladder Cancer

- Randomized trial* of 2-drug regimen Gemzar + cisplatin compared to a 4-drug regimen MVA + cisplatin
- An earlier randomized trial** showed MVA + cisplatin was statistically superior to single-agent cisplatin
- Applying our notation: T = Gemzar and C = MVA
 - We will be asking whether Gemzar, when added to cisplatin, preserves enough of MVA's effect when added to cisplatin
 - γ_{TC} = log hazard ratio (MVA over Gemzar)
 - γ_{CP} = log hazard ratio (no treatment over MVA)
 - γ_{TP} = log hazard ratio (no treatment over Gemzar)

^{*} Von der Masse et al: JCO, 18:3068-3077

^{**} Loehrer et al: JCO, 10:1066-1073 (1992)

Metastatic Bladder Cancer, continued:

• Point estimates:

$$\gamma_{CP}^{\wedge} = 0.421$$
 (with variance = 0.0181) from **

$$\gamma_{TC}$$
 = -0.039 (with variance = 0.0147) from *

 $\dot{\gamma}_{TP} = 0.382$ (with variance = 0.0328) from synthesis analysis

- → Rothmann/Synthesis method estimated a 90.7% preservation of benefit, but the lower 95% bound on this was only 11.7%
- So the "preservation of 50% of benefit" criterion was not met. However, Gemzar+cisplatin was statistically superior to cisplatin alone (two-sided p-value = 0.035).

^{*} Von der Masse et al: JCO, 18:3068-3077

^{**} Loehrer et al: JCO, 10:1066-1073 (1992)

More on the Bladder Cancer Example

- Assuming constancy of the parameter γ_{CP} across the trials:
 - The Gemzar+Cisplatin combination improves survival over single-agent Cisplatin (2-sided p = 0.035).
 - Survival with Gemzar+Cisplatin treatment was estimated to be similar to that with MVA+Cisplatin (estimated = hazard ratio = 0.96).
- So why do the test for preservation of effect?

Key Assumptions of the Synthesis Method

- <u>Constancy</u>: The parameter γ_{CP} is constant for all sources of data used in the analysis.
 - Note that γ_{CP} is a "between-treatment" parameter
 - The constancy assumption is much weaker than requiring a fixed patient population or constant within-treatment parameters
- <u>Assay sensitivity</u>: The active-controlled trial adequately measures the efficacy outcome and is capable of finding any differences between treatments in that outcome.
 - Assay sensitivity is more of an issue for "softer" efficacy outcomes.

Adjusting for Deviations from Assumptions

- Assay Sensitivity
 - departures defined quantitatively as $a = E(\gamma_{TC}) \gamma_{TC}$
- Constancy
 - departures defined quantitatively as $c = E(\gamma_{CP}^{A}) \gamma_{CP}$
- Snapinn and Jiang^{*} have proposed an adjusted synthesis analysis for testing H_0 : $\gamma_{TP} = 0 \ \underline{vs} \ H_A$: $\gamma_{TP} > 0$ that is structurally equivalent to the Rothmann geometric test statistic:

Reject H₀ if
$$((1-w)\dot{\gamma}_{CP} + \dot{\gamma}_{TC}) / \operatorname{sqrt}\{(1-w)^2 \operatorname{Var}[\dot{\gamma}_{CP}] + \operatorname{Var}[\dot{\gamma}_{TC}]\} > 1.96$$

where *w* controls type-1 error optimally when $w = (a + c)/(\gamma_{CP} + c)$.

<< Snappin and Jiang suggest w = 0.3 should be sufficient for moderate departures (corresponds to $a = \gamma_{CP} / 8$ and $c = \gamma_{CP} / 4$) >>

^{*} Stats in Med (2008) 27:371-381

Conclusions

- One standard of evidence (superiority to placebo) should be maintained regardless of the type of trial.
- The synthesis approach can test for superiority to placebo when an AC trial has been performed, accounting for the variability within both the AC trial and the historical data.
- The adjusted synthesis analysis can be applied in instances where deviations from constancy or assay sensitivity are of concern.
 - The adjustment factor *w* is mathematically equivalent to the preservation percentage in the Rothmann test statistic.
 - But setting *w* as high as 50% appears to be unreasonably conservative for most practical situations.